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Abstract 

During the last years there is a strong tendency of automotive industry to achieve suitable compromise 

between effort to lower environmental load at car operation by lowering its weight (thus to lower thickness of 

used parts) and on the other hand there is tendency to still increase the safety of passengers by utilization 

ultra-high strength materials. That is why these days are more and more important strength materials and 

alloys based e.g. on aluminium or magnesium. However industrial processing of these materials reveals 

quite a lot of problems. Thus these days there is a great demand for high-quality computational models 

within the numerical simulations for processing these materials because quite great portion of producing 

problems can be eliminated by pre-producing phase using numerical simulations (FEA). For precious 

numerical simulations computation is, beside geometry of part and tool, very important selection and 

accuracy of material input data subsequently regarding also selection of own computational model. During 

the last years there were developed a lot of computational models which within the metal forming regard 

yield criterions. One of these yield criterions is also anisotropic computational model named as Vegter 

model. The purpose of this paper is not only to describe such computational model but mainly to show 

procedure of measurement the most important input material data for stainless material to be computed by 

Vegter model. Such measurement is not only about static tensile test but there is used also the hydraulic 

bulge test to determine so-called bi-axial point in Vegter model. 

Keywords: Yield Criterion, Computational Model, Numerical Simulation, Hydraulic Bulge Test, Stainless  
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1. INTRODUCTION 

Numerical simulations and computational models represent one of crucial factors during pre-producing 

phase for any product. However their reliability (or more precisely reliability of their results and matching with 

reality) is greatly influence by used input data. Moreover there is not only problem with reliability of these 

data but also with the wide range of different materials when some of them are quite newly used or have 

been just developed (e.g. some ultra high-strength steels, aluminium alloys, magnesium alloys and so on). In 

this paper was tested stainless steel with the purpose to describe whole methodology how to find out such 

relevant input data to be used in advance computational models (e.g. in Vegter yield criterion). Three basic 

pillars of numerical simulations can be summarized as following: the static tensile test (stress-strain curve), 

normal anisotropy coefficients and forming limit diagrams. However for the modern computational models (or 

more precisely for different yield criterions) much more other results are necessary. Among them can be 

found mainly position of so-called bi-axial point which can be determinate e.g. via the hydraulic bulge test. 

Sometimes can be also required positions of plane-strain points which makes own testing much more time 

consuming. That is why in this paper was for experiments used firstly static tensile test and then hydraulic 

bulge test and the main purpose was to find out all important constants for their future utilization in advance 

computational models. In both cases there was used fitting of stress-strain curve by Swift´ s equation (1). 
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2. METHODOLOGICAL BASE AND EXPERIMENTAL PART 

The most important part of this papers deals with the own measuring, computing and fitting all important 

constants for their future utilization in the advance computational models of sheet forming (mainly Vegter 

yield criterion). That is why first part of testing stainless steel was about the static tensile test and its 

approximation by Swift´s equation and the second part dealt with the hydraulic bulge test.  

2.1. Static tensile test 

As was already mentioned, first part from the experiment was about the static tensile test. This test was 

carried out under common testing conditions and basic results are summarized in Table 1. As a major output 

from this measurement there was stress-strain curve and mainly its approximation acc. to Swift – see Fig. 1. 

Table 1 Mechanical properties of the tested material (stainless steel – DIN 1.4301) 

Rolling 
direction  

[° ] 

Yield 
strength 

Rp0,2 [MPa] 

Ultimate 
strength 

Rm [MPa] 

Uniform 
ductility 

Ag [%] 

Total 
ductility 

A80mm [%] 

Strength 
coefficient 

C [MPa] 

Strain 
hardening 
exponent 

n [1] 

Plastic 
strain 

equivalent 

φ0 [1] 

0° 288.9 647.1 47.85 53.58 1464.2 0.4980 0.0400 

45° 277.2 612.4 54.77 61.50 1474.7 0.4983 0.0406 

90° 283.7 624.7 55.14 60.8 1378.4 0.5154 0.0478 

For the subsequent utilization of stress-strain curve from static tensile (thus at uni-axial tensile stress state) 

there was necessary to compute three constants from so-called Swift´s equation which is modification of the 

Hollomon equation – see equation (1) and Fig. 1 (meaning of these constants is evident from table 1). [1] 
 

(1) 

 

 

Fig. 1 Approximation of stress-strain curve from static tensile test – stainless steel (rolling direction 0°) 
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2.2. Hydraulic bulge test 

The hydraulic bulge test represented the second major part of the experiment. For this test is very important 

fact that there is bi-axial stress state cause it is very important “point” for the future utilization for different 

yield criterions. Due to the different stress state in comparison to the static tensile test, for its stress-strain 

curve it is necessary to compute so-called effective stress σEF [MPa] and effective strain φEF [1]. Computation 

of all important values is written by means of equation (2), (3) and (4). [2] 

(2) 
 

(3) 
 

(4) 
 

where: 

σEF - effective stress  [MPa];  p - pressure   [MPa]; 

φEF - effective strain   [1];  R - radius of curvature  [mm]; 

φ1,2,3 - true strains   [1];  t, t0 - actual and initial thickness [mm]. 

For the own measurement of the hydraulic bulge test there was used contact-less optical system ARAMIS. 

The principle of such measurement is shown in Fig. 2. Measured material is placed between upper and 

lower blank-holders and two scanning cameras are added right before the tested material (stainless steel in 

this case). Of course very important is the location of transparent glass before cameras cause just after 

fracture of material (in this case it was under pressure 22 MPa) there is a lot of hydraulic oil “flying” towards 

cameras. Because it is optical system, there is very important to properly adjust cameras (calibration, shutter 

time, focusing, distances, angles and so on) and provide proper lighting for the whole scanning area.  

 

Fig. 2 Principle of the hydraulic bulge test with contact-less optical system ARAMIS 
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In Fig 3 are shown images scanned just from the left camera during the whole hydraulic bulge test - on the 

left is image and strain distribution for stage 0 (so blue color for strain distribution  = 0) and on the right is 

shown the same but in this case for stage 316 (pressure p = 18 MPa). Small "holes" are due to insufficient 

adjustment of cameras or bad light conditions. 

  

Fig. 3 Distribution of major strain  [1] – stage 0 (left) and stage 316 (right) 

As the whole evolution of the hydraulic bulge test was scanned by contact-less optical system ARAMIS, 

subsequently it was possible to compute distribution of both major strain  [1] and minor strain  [1] within 

the required area (top of the sphere). Due to that was also possible to compute strain in the thickness 

direction  [1] which is important to know to be able to compute actual thickness - see equation (4). Finally 

by fitting best-fit sphere over computed part of sphere (see Fig. 4) it was possible to find out required radius 

of curvature R [mm]. In Fig. 4 is shown such best-fit sphere again for stage 316 (pressure p = 18 MPa). After 

that was possible with equations (2). (3) and (4) to compute required effective stress σEF [MPa] and effective 

strain φEF [1] and to plot stress-strain curve for bi-axial state of stress (hydraulic bulge test) – see Fig. 5. 

 

Fig. 4 Application of best-fir sphere (stage 316; pressure p = 18 MPa) 
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In Table 2 are summarized all important values to plot required stress-strain curve of stainless steel. 

Because of space there is written every second used pressure (in fact it was from 1 up to 18 MPa á 1 MPa). 

Table 2 Results of the hydraulic bulge test (stainless steel; initial thickness t0 = 0.805 mm) 

Stage 
Pressure 

p [MPa] 

Radius of 
curvature 

R [mm] 

Actual 
thickness 

t [mm] 

Effective stress 

σEF [MPa] 

Effective strain 

φEF [1] 

26 2 261.964 0.786 336.906 0.022 

62 4 155.850 0.757 411.961 0.059 

98 6 120.380 0.727 497.281 0.099 

134 8 101.062 0.698 579.228 0.140 

170 10 88.348 0.668 661.582 0.183 

206 12 79.171 0.636 745.930 0.231 

243 14 72.094 0.602 838.297 0.287 

279 16 66.299 0.562 943.207 0.354 

316 18 60.611 0.504 1082.520 0.462 

From these values was subsequently created the scatter plot - see Fig. 5. It is not possible to use continuous 

increasing of pressure due to time delay in sensor and hoses. After that was also used (as in the case of the 

static tensile test) the power-law equation acc. to Swift and via fitting (nonlinear curve fit) was computed 

stress-strain curve and all important constants (C, n, φ0). Values of these constants for the hydraulic bulge 

test were as following: C = 1675.6 MPa, n = 0.6617 and φ0 = 0.0622. Such values are truly very important to 

compute so-called bi-axial point in advance computational models in numerical simulations (e.g. for Vegter 

yield criterion). Beside values of uni-axial tensile (eventually compression) point and normal anisotropy 

coefficients are these values the crucial for proper computation of required yield criterions 

 

Fig. 5 Approximation of stress-strain curve from the hydraulic bulge test (stainless steel – DIN 1.4301) 
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CONCLUSION 

This paper deals with the description how to measure and evaluate important input material data for advance 

computational models for forming stainless material. That is why this paper was divided into two major 

experimental parts – the static tensile test and the hydraulic bulge test. In Fig. 6 is shown their mutual 

comparison via stress-strain curves. As a tested was chosen stainless steel (DIN 1.4301) because it very 

properly represents one of the basic material types which are still more and more used in the automotive 

industry these days – (ultra) high-strength steel to improve safety of passengers. From this Fig. 6 is also 

evident influence arising from the different stress states between the static tensile test and the hydraulic 

bulge test – thus the uni-axial tensile stress state and the equi bi-axial stress state. However for both these 

parts there was an effort how to evaluate all important constants for their future utilization and processing in 

the advance computational models as can be e.g. Vegter yield criterion which is still more and more used 

these days mainly in the automotive industry. Thus from both experimental tests were computed (via 

approximation of stress-strain curves) especially following constants: strength coefficients C [MPa], strain 

hardening exponents n [1] and plastic strain equivalent φ0 [1] for stainless material. Together with normal 

anisotropy coefficients and forming limit diagrams represent these constants basic pillars to be used in 

modern numerical simulations and their computational models. It is evident that their measurement is quite 

time consuming but it is very important for the accuracy of numerical simulations so it can save a lot of 

energy and money during pre-producing phase. Such results are obvious when utilization different 

computational models and their matching with reality (e.g. real car-body panels) [3]. 

 

Fig. 6 Stress-strain curves comparison of static tensile test and hydraulic bulge test 
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