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Abstract 

Nanocomposite films Nb-Al-N produced by magnetron sputtering were researched in this work. Two stable 

crystalline structural states were found in the films: NbNch and solid solution В1−NbxAl1-xNyO1-y, and also an 

amorphous component associated with aluminum oxynitride with reactive magnetron sputtering. Sensitivity 

of substructural characteristics was set up to the current supplied to Al target and their relationship with the 

characteristic nanohardness and Knoop hardness. Recent changes in the range of 29-33.5 GPa and 46-48 

GPa, respectively. Initial principle calculations of phases NbN and Nb2AlN and also heterostructures of 

NbN/AlN were carried out for the interpretation of the results. The work was performed as a part of two 

complex state programs: "Development of nanostructured superhard coatings formation foundations with 

high physical-mechanical properties" (number 0112u001382) and "Physical principles of plasma 

technologies for complex processing of multicomponent materials and coatings" (number 0113u000137c). 

1. INTRODUCTION 

Films based on NbN show many interesting properties such as high hardness and electrical conductivity, 

thermal stability and chemical inertness. [1] NbN films are used as the cathode material for field electron 

emission in vacuum of microelectronic devices [2]. It was shown that the introduction of Al atoms into the 

lattice led to the formation of solid solution Nb1−хAlхN. For solid solutions Nb1−хAlхN, B1 (type - NaCl) 

structure is more preferable for x below 0.45. In the range of x = 0.45-0.71, the mixture of structures B1 and 

B4 was observed, while when x> 0.71, B4 structure (type - wurtzite with a hexagonal structure) was formed 

[6,7]. Films Nb-Al-N composed of solid solution Nb1-хAlхN with B1 (rare BК) and B4 structures or mixtures 

thereof [3-7]. On the other hand, hitherto, nanocomposite NbN/AlN films were not investigated. Thus, in the 

present study, we set out to research the Nb-Al-N film, arguing that under certain conditions can be formed 

nanocomposite structure of the films, which may have improved mechanical properties compared to films 

composed of the substitutional solid solutions Nb1−хAlхN. 

2. EXPERIMENTAL DETAILS 

Films Nb-Al-N deposited on the mirror-polished wafer Si (100) using a DC magnetron sputtering Nb (99.9%, 

Ø72 x 4 mm) and Al (99.999%, Ø72 x 4 mm) under argon and nitrogen with the following parameters of 

deposition: the substrate temperature TS = 350С; substrate bias voltage UB = -50 V; The flow rate (F) 

FАr = 40 sccm; FN2 = 13 sccm; operating pressure PC = 0.17 Pa. The current supplied to the target Al (IAl)  

was 100, 150, 200, 250 and 300 mA, which corresponds to the discharge power density PAl = 5.7, 8.6, 11.4, 

13.7 and 17.1 W/cm2, respectively. Current supplied to the target Nb (INb) was 300 mA (PNb = 17.1 W/cm2). 

The base pressure in the vacuum chamber was better than 10-4 Pa. The distance between the target and the 

substrate holder was 8 cm. The dihedral angle between the targets was ~ 450.  Substrates were 
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ultrasonically cleaned before they were placed in a vacuum chamber. Furthermore, prior to deposition, the 

substrates were etched in a vacuum chamber in the hydrogen plasma for 5 min. 

3. RESULTS AND DISCUSSION 

Structural and mechanical properties were analyzed depending on IAl.values. The structure of the coatings 

was researched by X-ray diffraction (XRD, diffractometer DRON-3M ) in CuКα radiation. The program of 

authoring profiles sharing was used with the application of complex diffraction profiles. Substructural 

characteristics (crystallite and microstrain size) were determined by approximation using the approximation 

function as - Cauchy function. The spectrum of Fourier spectroscopy (FTIR) was measured at room 

temperature in the range of 400−4000 cm-1 by spectrometer "TSM 1202" LTD «Infraspek». Knoop hardness 

(HK) was assessed using microhardnessmeter Microhardness Tester Micromet 2103 BUEHLER LTD under 

a load of 100 mN, and by nanoindentation using nanohardnessmeter G-200, equipped with a Berkovich 

indenter. The loads were chosen in such conditions that the indenter penetration wouldn’t exceed 10-20% of 

the film hickness. The film thickness was determined by optical profilometer "Micron-gamma". The thickness 

of the Nb-Al-N coatings (d) depends weakly on IAl. D values were in the range of 0.7-0.9 μm. 

 
 

(a) 

 

(b) 

Fi 1. XRD spectra of Nb-Al-N coatings deposited at different IAl: 1 − 100 mA, 2 − 150 mA, 3 − 250 mA, 4 –

 300 mA (a) portion and on the division of the diffraction profile of coating components Nb-Al -N, deposited at 

IAl = 150 mA (b): 1 − NbN, 2 − Nb0,67Al0,33N, 3 - total approximating curve, 4 - starting point of the data array. 
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Figure 1 (a) shows the X-ray diffraction spectra of the Nb-Al-N films at various IAl. Marked peaks correspond 

to the structure of the planes B1−NbNх [8]. Halo component of the amorphous phase was manifested at the 

same time in the range of diffraction angles 2Θ = 18−30, based on previous studies halo component can be 

identified as the amorphous phase of aluminum nitride. It is seen that the reflection (200) is the main 

comparing with others. Crystallites were formed for all IAl with a relatively small constant potential of bias on 

the substrate -50 V with preferentially oriented growth with [100] axis perpendicular to the plane surface. The 

X-ray (200) and (400) reflections are asymmetrical to larger angles . Separating these reflexes showed the 

presence of two components with similar lattice type, but with two typical periods. Figure 1 (b) shows the 

results of the deconvolution of (200) and (400) peaks in the Gaussian for the film deposited at 150 mA (curve 

1 in Figure 1 (a)). Curves 1 in Figure 1 (b) correspond to the cubic niobium nitride with lattice constant a = 

0.439-0.438 nm. Gaussian curve 2 can be attributed to a cubic NbN with low aluminum content and the type 

of substitution = 0.428-0.429 nm, which is characteristic of the system Ti-Al-N with ratio of aluminum and 

niobium atoms in the lattice as 1/2 (approximate composition is Nb0,67Al0,33N). The latest one was determined 

based on the Vegard's rule for the same type of crystal lattices by substitution of atoms with different radius 

[9]. Along with this, lattice parameters B1-NbNx and B1-AlN were used as the basic, respectively 0.4393 nm 

and 0.4120 nm [5]. With increasing IAl Gaussian peak position does not change, and the intensity of the 

peaks associated with the solid solution increases. For higher currents, the phase relationship 

NbNx/Nb0.67Al0.33N is in proportion close to 5.3. 
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Fig. 2. The dependence of the substructural characteristics (average crystallite size, L (a) and 

microdeformation, ε (b)) on IAl for 1 − NbN and 2 − Nb0.67Al0.33N (or (Nb2AlN) crystalline components. 

The method of approximation was used to determine the substructural characteristics of two diffraction 

reflections orders. A pair of (200)-(400) also was used. The results of determination of substructural 

characteristics are shown in Figure 2. It can be seen that as the current increases in the direction of the axis 

IAl texture [100], there is an increase in crystallite size and micro deformation state of them. Latest one 

apparently is determined by large dissolving of aluminum atoms in the lattice of niobium, which leads to a 

strong distortion of the lattice. The sharp decrease in crystallite size and microstrain values at the maximum 

current of IAl = 300 mA may be due to the annealing process and the ordering of the defect structure with the 

formation of new boundaries on the type of process polygonization. 

We deposited AlN films at various IAl. X-ray studies showed that all AlN films were amorphous (a-AlN, is not 

shown in the paper). Infrared absorption spectra of AlN films indicate that the number of Al-N bonds 

increases with IAl enhancement: (zone of absorption at 667 cm-1, associated with fluctuations of Al−N [10] 

becomes more noticeable). 

On the basis of these results, it can be assumed that two stable crystalline structural states were found in the 

films: В1−NbNx and solid solution with a composition close to the В1−Nb0.67Al0.33N. The films also contain an 

amorphous component associated with aluminum nitride. Thus, the films have a nanocomposite structure 

which is nanocrystallites- В1−NbNx и В1−NbxAl1-xN embedded in a matrix of a-AlN 

(nc−В1−NbNx/nc−В1−NbxAl1-xN/a−AlN).   
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Figure 3. Nanohardness (H), the Knoop hardness (HK)(a) and modulus of 

elasticity (Е)(b) depending on IAl. 

 

The results of nanoindentation and microindentation deposited films are shown in Figure 3. Comparison of 

the results in Figure 2 and 3 shows that there is a correlation between the mechanical properties and 

microdeformations in the Nb-Al-N films. Also nanohardness, elastic modulus and Knoop hardness (HK) are 

maximum for films Nb-Al-N with a grain size in the range of 30-40 nm. Increase of nanohardness from 28 

GPa for films NbN [11] to 32 GPa for the Nb-Al-N film is obviously connected with the formation of a 

nanocomposite tipped Nb-Al-N film. We observed that the Knoop hardness higher than nanohardness ~ 

50%. This may be due to the fact that the nanoindentation occurs dynamically, while the Knoop hardness is 

determined in a static mode. In order to verify our conclusions on the structure of Nb-Al-N films we performed 

initial principal calculations of B1 -NbN, solid solutions B1−NbxAl1-xN, heterostructures B1−NbN(001)/B1−AlN 

and the ordered phase Nb2AlN. Terms of calculation are described in detail in the work [12]. Here we note 

that the calculations were performed using the computational code [13]. A generalized gradient 

approximation was used for exchange correlational potential [14]. Simulation of molecular dynamics was 

performed using NVT ensemble at 1400 K with subsequent cooling to 0 K and with static relaxation [12]. 

96 atomic structures built by translating 8-nuclear-cell B1 as (223) were considered [12]. The compositions 

of solid solutions and heterostructures were selected equally. Nb2AlN cell (space group P63/mmc, No. 194) 

consists of eight atoms. The above structures include all the possible configurations of the system NbxAl1-xN. 

XRD spectra were calculated using the software PowderCell-2.4 [15]. 

 

Fig. 4. Atomic configuration B1−NbN(001)/1 ML B1−AlN of heterostructure (a), of solid solution Nb0.83Al0.17N 

(b), B1-NbN(001)/2 ML B1−AlN of heterostructure (c), of solid solution Nb0.67Al0.33N (d). 
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Composition of structures (a) and (b) is the same; a structure composition (c) is equal to the composition 

respectively (d). The inscription above the figure represents the difference between the total heterostructure 

energies and the corresponding solid solution with a random arrangement of atoms in the metal lattice. 

Figure 4 shows the atomic configuration of heterostructures B1−NbN(001)/ 1 ML AlN and 

B1−NbN(001)/ 2 ML B1−AlN, ML-monolayer, as well as solid solutions B1−NbxAl1−xN. Analysis of the total 

energies shows that solid solutions B1−NbxAl1-xN for x <0.67 should decay and nanocomposite structure with 

B1-AlN interface can be formed for these concentrations. 

 

Fig. 5. The calculated X-ray diffraction patterns. 

Using atomic configurations resulting from first-principles calculations, we calculated diffraction patterns for 

the B1−NbNч, B1−NbxAl1-xN, х ~ 0.67 и Nb2AlN. The calculated XRD spectra are shown in Figure 5. 

Comparison of the calculated and experimental spectra (Figure1) shows that reflexes about 2 ~ 320 

associated with the heterostructure, and about 2 ~ 380, resulted by phase Nb2AlN and does not occur at 

the experimental spectra. Therefore, we can assume that our films contain neither Nb2AlN, nor any epitaxial 

layers B1-AlN, but rather consist of crystallites B1−NbNch and B1−NbxAl1-xN, х ~ 0.67. As the matter of the 

fact the difference between the peak positions Δ2 = 2∙(B1−NbNч)−2∙(B1−NbxAl1-xN) for each diffraction 

peak (200) and (400) on experimental and theoretical diffraction patterns is almost identical. We should also 

note that films of niobium nitride are prone to accumulate small amounts of oxygen [5]. Oxygen can replace 

part of the nitrogen in solid solution and in the amorphous matrix [16,17]. Therefore, structure NbxAl1-xNyO1-y, 

x~0.67, 1-y << 1will be more realistic for the solid solutions, as for the amorphous matrix - a-AlNO, which 

was shown as a result of elemental analysis, obtained by SIMS, RBS and EDS in these films 

CONCLUSION 

Films Nb-Al-N were deposited on silicon substrates by magnetron sputtering targets of Nb and Al at different 

discharge powers at the target of aluminum. Experimental and theoretical studies show that the films 

obtained at selected deposition parameters have the nanocomposite structure that represents the 

nanocrystals В1−NbNx and В1-NbxAl1-xNyO1-y, embedded in a-AlNO matrix (nc−В1−NbNx/nc−В1−NbxAl1-
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xNeO1-y/a−AlNO). Nanocomposite coating with high microstrain action due to the difference in atomic radius 

of the crystal lattices metal components shows high hardness values (up to 32 GPa). Deposited 

nanocomposite films may be recommended with the given mechanical properties as wear resistant or 

protective coatings. 
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