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Abstract 

In the paper, the chemical composition of the passive surface layer obtained on AISI 316L (EN 1.4404) 

austenitic stainless steel after electrochemical treatment at the current density  of 50 A/dm2 in the mixture of 

three acids H3PO4, H2SO4 and HNO3, is presented.  The obtained results have shown that mainly Fe2(SO4)3, 

Cr2O3, Cr2(SO4)3, CrPO4, CrO3 as well as ions CrO4
2, Cr2O7

2, were detected. In total, however, phosphates 

form the passive layer. The calculated Pitting Resistance Equivalent Number (PREN) for  this surface layer is 

equal over 20. 
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1. INTRODUCTION  

Electropolishing is an important electrochemical treatment enabling to obtain the specific surface properties of 

many metals and alloys [1-8]. A significant modification of surface layer is achieved after 

magnetoelectropolishing, the process developed in recent years [9-25]. Stainless steels are the most popular 

materials undergoing continuous research and development concerning their surface properties and 

modification of surface layers formed after these electrochemical processes [2,3,9-22]. Moreover, besides 

corrosion resistance improvement [1-3, 8-13, 18-23] as the main effect of these processes, the modification 

and enhancement of mechanical properties has been also gained [24,25]. The electrolyte used in these 

processes consists mainly of orthophosphoric and sulfuric acids. This present study includes the mixture of 

three acids H3PO4, H2SO4 and HNO3, used for electropolishing of austenitic AISI 316L stainless steel. After 

this process the XPS characterization of surface layer was done.   

2. METHOD 

2.1  Material  

The AISI 316L (EN 1.440) stainless steel samples served for the study, with the material composition 

presented in the paper [11]. The samples were cut off a cold-rolled metal sheet after plate rolling so that the 

austenitic structure of the 316L SS was retained. They were prepared in the form of rectangular specimens of 

dimensions 530 mm cut off the metal sheet 1 mm thick. 

2.2  Set up and parameters 

The electrolytic treatment was performed at the current density of 50 ± 0.1 A/dm2. The main elements of the 

set-up were: a processing cell, a dc power supply, the electrodes and connecting wiring. The studies were 

carried out in the electrolyte of initial temperature of 60 ± 2 C. For each run, the electrolytic cell made of glass 

was used, containing up to 500 cm3 of electrolyte of H3PO4, H2SO4, HNO3 in proportions 1 : 1 : 1.  
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2.3  XPS studies 

The XPS measurements were performed using the SCIENCE SES 2002 instrument with a monochromatic 

(Gammadata-Scienta) Al K(alpha) (hν = 1486.6 eV) X-ray source (18.7 mA, 13.02 kV). Scans analyses were 

carried out with an analysis area of 1×3 mm and a pass energy of 500 eV with the energy step of 0.2 eV and 

a step time 200 ms. The binding energy of the spectrometer has been calibrated by the position of the Fermi 

level on a clean metallic sample. The power supplies were stable and of high accuracy. The experiments were 

carried out in an ultra-high-vacuum system with a base pressure of about 610-10 Pa. The XPS spectra were 

recorded in normal emission. In view of optimizing the signal-to-noise ratio to about 3.2, one the XPS 

measurement cycle covered 10 sweeps. For the XPS analyses the CasaXPS 2.3.14 software with Shirley 

background type was applied [26]. 

3. RESULTS 

In Fig. 1, the XPS results of  iron (Fe 2p), chromium (Cr 2p), manganese (Mn 2p), molybdenum (Mo 3d, Mo 3s), 

nickel (Ni 2p), carbon (C 1s), oxygen (O 1s, O KLL), phosphorus (P 2s, P 2p), sulfur (S 2s, S 2p), nitrogen 

(N 1s) as well as calcium (Ca 2p) spectra of AISI 316L surface electrochemically treated at 50 A/dm2 in the 

electrolyte consisting of H3PO4, H2SO4, HNO3, are presented. Based on the results, it can be concluded, that 

the passive layer consists mainly of chromium, iron, molybdenum and oxygen bonded with phosphorus and/or 

sulfur, forming together most likely phosphates and sulfates. The carbon, a part of oxygen and part of nitrogen, 

should be treated as contaminations. 

 

 

Fig. 1. XPS survey spectrum of both, passive carbon and contamination layers of AISI 316L surface 

electrochemically treated at 50 A/dm2 in H3PO4, H2SO4, HNO3 electrolyte mixture 

Based on the survey XPS measurements, the high resolution XPS spectra were performed that is shown in 

Fig. 2. First analysis of the obtained spectra leads to the conclusion that there are mainly phosphates and 

sulfates in the surface passive layers, as indicated by the bond energies of phosphorus (P 2p) and sulfur 

(S 2p), which are equal to 133.6 eV and 169.2 eV, respectively. In the case of manganese (Mn 2p), the binding 

energy equaling to about 643 eV suggests a dominance of manganese compounds on the fourth state of 

oxidation. The maximum of binding energy for nickel (BE=856.3 eV) can be interpreted as NiSO4 (856.8 eV 

[26-31]). More difficult situation is in the case of Mo 3d and N 1s overlapping spectra, where maximum binding 

energy at 400.5 eV was found, that regarding nitrogen can be interpreted as an organic contamination [26-31]. 

The main iron, chromium and molybdenum oxidation states, on the basis of main maximum signal in the 

spectrum, can suggest that Fe3+, Cr3+, Mo6+ ions were found in the passive surface layer. In order to propose 

specific chemical compounds which could be interpreted with a high probability, the fitting of high resolution 

Fe 2p3/2 and Cr 2p3/2 spectra were performed, as presented in Figs. 3 and 4. In Table 1, the chemical 
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composition of passive layer formed on AISI 316L SS after the electrochemical treatment at 50 A/dm2 in H3PO4, 

H2SO4, HNO3 electrolyte, is given. There is visible the dominance of phosphorus (56.2 at%), which is most 

likely bonded with oxygen to form phosphates (PO4 ). The Pitting Resistance Equivalent Number (PREN) for 

the obtained passive layer is above 20, that is a good achievement of the study.  

 
Fig. 2. High resolution XPS spectra of iron (Fe 2p), chromium (Cr 2p), molybdenum (Mo 3d), manganese 

(Mn 2p), nickel (Ni 2p), nitrogen (N 1s), oxygen (O1s), phosphorus (P 2p) and sulfur (S 2p) spectra of AISI 

316L surface after electrochemical treatment at 50 A/dm2 in H3PO4, H2SO4, HNO3 electrolyte 
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Table 1 Chemical composition of the passive surface layer after electrochemical treatment at 50 A/dm2 in  

  H3PO4, H2SO4, HNO3 electrolyte, in at% 

Fe Cr Mo Ni Mn P S 

13.5 12.0 2.5 3.2 3.4 56.2 9.3 

 

 

Fig. 3 Fitting of Fe 2p3/2 spectrum of AISI 316L passive layer formed after electrochemical treatment 

 

In Fig. 3, the fitting of iron Fe 2p3/2 spectrum of AISI 316L passive layer formed after electrochemical treatment 

at 50 A/dm2 in H3PO4, H2SO4, HNO3 electrolyte, is presented. The peak at binding energy (BE) equaling 707 

eV represents the metal iron (Fe0). The peaks 709.96 eV and 716.3 eV can suggest, that the iron bonded with 

oxygen has a second oxidation state (Fe2+). The next peak, i.e. 711.6 eV, which is a maximum of that spectrum, 

and 713.9 eV, can be interpreted most likely as Fe2(SO4)3, that matches with the previous two peaks. 
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Fig. 4.  Fitting of Cr 2p3/2 spectrum of AISI 316L passive layer formed after electrochemical treatment 

In Fig. 4 the fitting of iron Cr 2p3/2 spectrum of AISI 316L passive layer formed after electrochemical treatment 

at 50 A/dm2 in H3PO4, H2SO4, HNO3 electrolyte, is presented. The peak at binding energy (BE) equaling 574.2 

eV represents the metal chromium (Cr0). The peaks 575.5 eV, 576.49 eV, 577.4 eV and 578.46 eV can suggest 

that the chromium bound with oxygen has a third oxidation state (Cr3+).  The most likely chromium compounds 

on the base of those peaks can be a mixture of Cr2O3, Cr2(SO4)3 and CrPO4. The next peak, i.e. 580.1 eV, can 

be interpreted as Cr6+ (CrO3, CrO4
2, Cr2O7

2).   

4. CONCLUSIONS 

After electrochemical treatment of austenitic AISI 316L (EN 1.4404) stainless steel at current density of 

50 A/dm2 in H3PO4, H2SO4, HNO3 electrolyte iron, chromium, molybdenum, manganese, nickel, oxygen, 

phosphorus, sulfur, were detected in the passive layer. Additional elements found in the passive layer may be 

treated as contamination consisting of carbon, nitrogen, and calcium.  On the basis of the binding energies of 

analyzed peaks it can be concluded that in the passive layer there is mainly a mixture of Fe2(SO4)3, Cr2O3, 

Cr2(SO4)3, CrPO4, CrO3 as well as ions CrO4 , Cr2O7 . Pitting Resistance Equivalent Number (PREN) of the 

passive layer, consisting mainly of phosphates, equals over 20. 
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